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ABSTRACT

An important area of research in computational biochemistry is the design of molecules
for specific applications. The design of these molecules, which depends on the accurate
determination of their three-dimensional structure, can be formulated as a global optimiza-
tion problem. In this study, we present results from the application of a new conformation
searching method based on direct search methods. We compare these results to some earlier
results using genetic algorithms and simulated annealing.
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1. Introduction

An important area of research in computational biochemistry is the design of molecules
for specific applications. Examples of these types of applications occur in the development
of enzymes for the removal of toxic wastes, the development of new catalysts for material
processing, and the design of new anti-cancer agents. The design of these drugs depends
on the accurate determination of the structure of biological macro-molecules. This problem,
known as the molecular conformation problem, consists of finding the configuration of a
molecule that yields its lowest free energy.

Under the assumption that the native structure of a molecule corresponds to a confor-
mation for which the energy is at or near the global minimum, the molecular conformation
problem can be formulated as an optimization problem. In general, one can decompose the
search for a global minimum into two phases. In the first phase, we are interested in gener-
ating conformations that will be used as starting guesses for a second energy minimization
phase. Using standard optimization techniques, each starting structure can be minimized to
yield a final low-energy configuration. Unfortunately, because the total energy of a molecule
depends on atom-atom interactions, the number of possible low-energy configurations can
grow exponentially with the number of atoms and has been estimated by Hoare to be on the
order of O(eN") for an N-atom molecule [1].

There have been many attempts at developing efficient methods for the solution of this
optimization problem. For a review of conformational searching methods see [2, 3]. Other
recent attempts at conformational searching involve parallel stochastic methods as in [4, 5],
and direct optimization methods as in [6, 7]. To address the multiple minimum problem,
several people have attempted to use new search algorithms based on genetic algorithms [8]
and simulated annealing [9]. Genetic algorithms (GA) [10] belong to a class of stochas-
tic optimization methods based on analogies to natural selection strategies from evolution.
Simulated annealing (SA) [11] is another stochastic optimization method that is based on a
thermodynamic process called annealing. Both GA and SA have the property that they allow
uphill directions and the iterates will therefore not necessarily decrease monotonically. This
property can be exploited to allow the search methods to jump out of local wells by moving
uphill. However, both of these approaches can be time consuming and depend heavily on
certain carefully chosen parameters.

As has been previously pointed out [3] the generation of the starting geometries will
have the greatest effect on the final configurations found. The purpose of this study is
to suggest an alternative methodology to genetic algorithms and simulated annealing for
conformational searching. The new approach is based on the use of a particular instance of a
class of methods known as pattern search methods. The new approach which uses a method
known as the parallel direct search method [12] is robust, depends on only one parameter,
and is easily parallelized.



2. Numerical Methods

2.1 Model Problem

For the purpose of this study, it was helpful to develop a model problem for which we could
easily estimate the global minimum and which could easily be scaled while still retaining the
same functional characteristics. We used a two-dimensional polymer consisting of N atoms
connected by rigid rods of unit length. The function used to describe the energy of this
system is given by a pairwise additive function consisting of Lennard-Jones potentials, that
is,
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where 7;; is the distance between the atoms z; and z;, © is the bond angle between any three
consecutive atoms, and « is a constant. In this study, we have conducted the conformational
search in internal coordinates which has the advantage of implicitly enforcing the bond length
constraints. If we set « = 1, the minimum for a given pair of atoms will correspond to a
unit distance, and the global minimum corresponds to closed hexagonal packs with unit
spacing. This test problem has two nice features: 1) the dimension of the problem can be
easily adjusted, and 2) the minimum energy can be easily deduced for any given dimension.

For this model problem, the parameter space can be visualized as having two easily
distinguished regions. The first region is characterized by high energies and corresponds to
configurations that are knotted. The second region is characterized by energies less than zero
and corresponds to un-knotted configurations. The probability that a random configuration
will have at least one knot (and therefore fall into the first region) is a function of the
number of atoms in a molecule with that probability approaching one for even moderately
sized molecules. As an example, for a molecule with 61 atoms, of 10,000 randomly generated
conformations, only one conformation had an energy less than 0.0.

2.2 Direct Search Methods

Direct search methods belong to a class of optimization methods that do not compute deriva-
tives. Examples of direct search methods are the Nelder-Mead Simplex method [13], Hooke
and Jeeves’ pattern search [14], the box method [15], and Dennis and Torczon’s parallel
direct search algorithm (PDS). The PDS algorithm can be viewed as an intelligent adaptive
grid search algorithm employing a multi-sided simplex.

Starting from an initial simplex S,, the function value at each of the vertices in 5, is
computed and the vertex corresponding to the lowest function value, v,, is determined. Using
the underlying grid structure, the simplex S, is rotated 180° about v, and the function values
at the vertices of this rotation simplex, S,., are compared against v,. If one of the vertices in
the simplex S, has a function value less than the function value corresponding to v,, then an
expansion step to form a new simplex, S,, is attempted in which the size of S, is expanded
by some multiple, usually 2. The function values at the vertices of S, are compared against



the lowest function value found in S,. If a lower function value is encountered, then S, is
accepted as the starting simplex for the next iteration; otherwise S, is accepted for the next
iteration. If no function value lower than the one corresponding to v, is found in S,, then a
contraction simplex is created by reducing the size of S, by some multiple, usually 1/2, and
is accepted for the next iteration.

Because PDS only uses function comparisons it is easy to implement and use. Since the
rotation, expansion, and contraction steps are all well-determined it is possible to determine
ahead of time a set of grid points corresponding to the vertices of the simplices constructed
from various combinations of rotations, expansions, and contractions. Given this set of grid
points, called a search scheme, the PDS algorithm can compute the function values at all of
these vertices in parallel and take the vertex corresponding to the lowest function value. An
interesting consequence of this approach is that the PDS algorithm can jump out of local
wells by using a large enough search scheme size. By varying the size of the search scheme
one can therefore use the PDS algorithm as a means of efficiently generating conformations
in a manner similar to GA and SA.

It is also worthwhile to contrast PDS with grid search methods. In a grid search method
the grids are generated by starting with a fixed molecule and systematically varying one of
the parameters. This method works well for small molecules but becomes computationally
prohibitive for larger molecules. The grid in PDS however is adaptive and will automatically
change in response to the contours of the energy surface.

3. Numerical Results

In an earlier study [8], it was noted that both genetic algorithms and simulated annealing
outperform random search for large molecules. However, both approaches were computation-
ally expensive and depended heavily on carefully chosen certain parameters. In this study,
we performed numerical experiments to compare direct search methods against both genetic
algorithms and simulated annealing. The PDS code we used is a slight modification to a code
developed by Torczon and obtained from the Center for Research on Parallel Computation
at Rice University. For the energy minimization phase we used several well-known optimiza-
tion methods, including a conjugate gradient method, a limited memory BFGS (LBFGS)
method, and a quasi-Newton method, SUMSL, developed by D. Gay. Details of these meth-
ods can be found in [16, 17, 18]. All numerical tests were run on SGI workstations using
IEEE double precision arithmetic with a machine precision, p ~ 1.1 1016,

Using the model problem (1) we tested various combinations of methods for molecules
with different numbers of atoms. We studied molecules of 19, 37, and 61 atoms because the
minima correspond to configurations that are hexagonal closed packs of radii 2, 3, and 4.
Each test case consisted of running a set of trials starting from a set of randomly chosen
starting points. To provide consistency across all of the test cases a set of 1000 configurations
was generated from a uniform random distribution and stored in a file. This file was then
used as the set of initial guesses for all of the test cases.

Because of the different methods used there were three different stopping criteria used.



Table I: Comparison of different PDS search size schemes (SSS) for 61 atom case.

Method  Trials Minimum % Negative

PDS(118) 200  -92.63 0.5
PDS(295) 200  -115.95 45.0
PDS(590) 200  -113.94 78.0
PDS(1180) 100  -115.02 83.0
PDS(2360) 100  -117.47 85.0

The PDS method uses a step tolerance, that is, the method terminates whenever the following
condition is met:

1
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where A = max(1, ||v||2), and vy is the initial guess. The conjugate gradient method from
[19] used a convergence criteria based on the function values:
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where € is equal to the machine precision. For the LBFGS method, the convergence test
used consists of a test on the gradient, that is,

[lgx]| < GTOL (max(1, [[zx]])) -

Unless otherwise indicated, all of our tests used the following tolerances: XTOL = 103,
FTOL = 107%, and GTOL = 107°.

3.1 Search Scheme Size

The first question we wished to address is whether the size of the search scheme has an
effect on the geometries generated by PDS. Clearly the larger the scheme size the larger the
sampling of the parameter space, at the expense of each iteration being more costly. In the
first set of test cases, we chose the simplex shape to be regular, allowing PDS to construct
the entire initial simplex from the initial random configuration. We considered search scheme
sizes (SSS) of 2m, 5m, 10m, 20m, and 40m where m = N — 2 for a molecule of N-atoms
and ran 100 trials for each test case. Table I contains the results for the 61 atom case.

As Table I shows, all of the test cases yielded configurations with negative energies. For
the first three tests, we ran 200 trials while the last two test cases used 100 trials. Each
trial typically converged in about 50 iterations and took about 1-3 minutes of CPU time per
trial. The fourth column of Table I also displays the percentage of all trials that yielded a
negative energy. In a sense, this is an indication of how robust the method is. We note that
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Table II: Comparison of PDS versus GA and SA for 19, 37, and 61 atom test cases.

Method Minimum
19 atoms 37 atoms 61 atoms
GA CG -44.3 -97.3 -166.6
SA CG -44.2 -94.8 -164.4
PDS CG -45.3 -95.3 -142.6
Best Known -45.3 -98.3 -170.5

with a search scheme size of 10m approximately 80% of the trials had configurations with
negative energies. As the search scheme size increases we get a higher percentage of trials
with negative energies but at the cost of substantially more CPU time per trial. Figure 1
contains a representative configuration for the 61 atom test case computed by PDS using a
search scheme size of 2360 points.

3.2 Energy Minimization

The next step in our numerical experiments was to test the combination of PDS with an
energy minimization phase. For the purposes of a direct comparison with GA and SA, we
ran a test case using PDS with the same CG routine used in [8]. The lowest energies found
are given in Table II and compared against the best known global minimum energy.

For the 19 and 37 atom test cases, the results for all three methods are similar in terms
of the final energies. In the 61-atom case, the various methods start to exhibit greater
differences. In this case, the lowest energies computed by GA with CG and SA with CG are
much closer to the best known global minimum than PDS with CG. Table IT however does
indicate that PDS can be used in a similar manner to GA or SA to generate good starting
conformations for the energy minimization phase.

The next set of tests combine PDS with gradient methods. All of these tests use PDS
with a value of SSS of 40m = 2360. From tests using random search we can predict that
it would not be useful to do an energy minimization starting from a configuration that has
a high energy. We therefore modified our algorithm to set a user-defined energy tolerance
such that if the value returned from the PDS algorithm is higher than this energy tolerance,
the minimization phase is skipped.

We also note that PDS was modified so that it would restart after it had converged using
the best vertex as its initial guess for the restart. To allow for greater flexibility, we allowed
the user to set the maximum number of restarts. In these tests we set the number of restarts
equal to 5.

The results of these tests are displayed in Table III. The first observation we make is that
PDS is not effective as an energy minimization algorithm. Even with restarts, PDS does not
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Figure 1: Conformation computed for a 61 atom test case using PDS(2360).



Table III: Minimum energies found using PDS for 61 atom test case.

Method Energy
PDS(2360) PDS(2360) -117.5
PDS(2360) CG -142.6
PDS(2360) LBFGS -167.2
PDS(2360) SMSNO -166.0
PDS(2360) SUMSL -163.6

get a solution near a minimum. Theoretically PDS should not converge to a non-minimizer
so this behavior seemed unusual at first. In fact, if the search scheme size is increased at the
same time that a restart occurs, then PDS will start to progress towards a minimum again,
although at an extremely slow rate.

For the gradient based methods, the results are all similar in terms of the final energy.
The combination of PDS with LBFGS yielded the lowest energy overall, but not substan-
tially better than the other methods. The difference between SUMSL and SMSNO lies in
the availability of first derivatives. The SMSNO method uses finite differences to compute
gradients, whereas SUMSL uses analytic gradients. For these test problems, we used ADI-
FOR to generate analytic derivatives [20]. Figure 2 contains a representative configuration
computed by using a combination of PDS(2360) and SUMSL.

3.3 Distribution of Minima

Although our main goal is to find the global minimum it is also important to find any local
minima that are close to the global minimum. One way of depicting this result is to generate
a distribution of the local minima found for each method. Figure 3 contains the distributions
for the test cases corresponding to the 61 atom molecule. The three curves using PDS(2360)
all compare favorably with the distribution corresponding to the test results using GA. In
fact, all four curves generate distributions with at least 80% of the final configurations having
negative energies. Simulated annealing (SA) is the only method that does not do well on this
problem. We also note that of these methods, the combination of PDS(2360) with SUMSL
yields the best distribution with approximately 80% of the minima having energies below
-144.0.

4. Conclusions

We can make several conclusions from the numerical results. In [8], we studied GA and SA
with the conclusion that GA could be used for conformational searching. In this study, we
showed that PDS can also be used for conformational searching and performs at least as
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Figure 2: Final configuration computed using PDS(2360) + SUMSL for 61 atom test case.
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Figure 3: Distribution of minima for 61 atom test case.



well as GA and substantially better than SA for larger molecules. One of the advantages of
the PDS algorithm is that the user only has to decide on the value of one parameter. This
parameter, the search scheme size, has some effect on the convergence rate, but typically
the parameter can be chosen to be some small multiple of the dimension of the problem.
The PDS algorithm can also be easily parallelized allowing for even greater computational
efficiency.

We feel that these results are suggestive of the power of these new optimization meth-
ods for conformational searching for large molecules. Further research will concentrate on
new experiments using more realistic molecules. In particular, it would be interesting to
do a direct comparison with the methods used in [3] for computing the conformations of
cycloheptadecane.
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